

An oxidation-reduction indicator (redox indicator) is a compound which

exhibits different colours in the oxidised and reduced forms:

$$ln(ox) + ne = ln(Red)$$

The oxidation and reduction should be reversible. At a potential *E the ratio* of the concentrations of the two forms is given by the Nernst equation:

 $E = E^{\circ} + (0.0591/n) \log [lnox]/[lnred]$

where E° is the standard (strictly the formal) potential of the indicator. If the colour intensities of the two forms are comparable a practical estimate of the colour-change interval corresponds to the change in the ratio [Inox]/[InRed] from 10 to 1/10, this leads to an interval of potential of:

If the colour intensities of the two forms differ considerably the intermediate colour is attained at potential somewhat removed from E° , but the error is unlikely to exceed 0.06 volt. For a sharp colour change at the end point, E° should differ by about at least 0.15 volt from the standard (formal) potentials of the other systems involved in the reaction.

 One of the best oxidation-reduction indicators is the 1,10phenanthrolineiron(II) complex. The base 1,10-phenanthroline combines readily in solution with iron(II) salts in the molecular ratio 3 base:1 iron(II) ion forming the intensely red 1,10phenanthroline-iron(II) complex ion; with strong oxidising agents the iron(III) complex ion is formed, which has a pale blue colour.

Some oxidation-reduction indicators

Indicator Colour change		Oxidised form	Reduced forn
5-Nitro-1,IO-phenanthrolineiron(II) sulphate		Pale blue	Red
(nitroferroin) +1.25V			
• 1,10-Phenanthroline iron(II) sulphate (ferroin) Pale blue			Red
+1.06 V			
• 2,2'-Bipyridyl iron(II) sulphate +1.02V	Faint blue	Red
• 5,6-Dimethylferroin +0.97V		Pale blue	Red
 N-Phenylanthranilic acid, +0.89V 		Purple red	Colourless
 4,7-Dimethyl-1,10-phenanthrolineiron(II) 			
 sulphate (4,7-dimethylferroin) 		Pale blue	Red
 Diphenylaminesulphonic acid +0.85V 		Red-violet	Colourless
 Diphenylbenzidine 	+0.76V	Violet	Colourless
 Diphenylamine 	+0.76V	Violet	Colourless
• 3,3'-Dimethylnaphthidine Purplish-red		Purplish-red	Colourless
Starch-I;,KI	+0.53V	Blue	Colourless
 Methylene blue 	+0.52V	Blue	Colourless