

Pseudohalides are certain uni-negative groups (CN⁻, OCN⁻, N₃⁻ etc.) which are made up of two or more electronegative atoms and resemble halide ions in some respects. Examples of some important pseudohalide ions are : cyanide ion(CN⁻) ; cyanate ion(OCN⁻) ; isocyanide ion(NC⁻) ; fulminate ion (ONC⁻) ; isocyanate ion(NCO⁻) ; selenocyanate ion (SeCN⁻) ; isoselenocyanate (NCSe⁻) ; azide ion (N₃⁻) etc.

As the dimers of halide ions are called halogens, the covalent dimmers of the pseudohalide ions are called pseudohalogens. Example of some pseudohalogens are cyanogen $(CN)_2$, oxycyanogen $(OCN)_2$; thiocyanogen $(SCN)_2$; selenocyanogen $(SeCN)_2$; azidocarbon disulphide $(SCSN_3)_2$ etc.

The pseudohalides does not forms pseudohalogens. Example: azide (N_3) .

PREPARATIONS:

- Reaction of copper sulphate with potassium cyanide gives cyanogens at 60°C
 2CuSO₄ + 4KCN → (CN)₂ ↑ + 2CuCN + 2K₂SO₄ Cyanogen is a colourless poisonous gas.
- 2. Thiocyanogen may be prepared by suspending AgSCN in diethyl ether or SO₂(liquid) and oxidising the anion SCN⁻ at low temperature with Br₂ or I₂. (SCN)₂ melts at $\sim -7^{\circ}$ C to an orange suspension which rapidly polymerise to the brick-red (SCN)_x.

DISSIMILARITY BETWEEN HALOGENS AND PSEUDO HALOGENS

Pseudohalogens undergo polymerisation and form polymerised species. For example:

$n(CN)_2 [500^{\circ}C] \rightarrow 2(CN)_n$

$n(SCN)_2$ [Room temp.] $\rightarrow 2(SCN)_n$

Halogens have no tendency to undergo polymerisation.

Similarities between halogens and pseudohalogens:

- 1. Like halogens, pseudohalogens are also dimeric and fairly volatile in the free state.
- 2. Pseudohalogens are isomorphous to halogens when in the free or solid state. For example Cl_2 is isomorphous to $(CN)_2$ and similarly Br_2 is isomorphous with $(SCN)_2$.
- 3. Like halogens, pseudohalogens also add to ethylenic double bond linkage.

$$\begin{array}{c} H_2C=CH_2+Cl_2\rightarrow CH_2\text{-}CH_2\\ & | & |\\ Cl & Cl \end{array}$$

$$\begin{array}{c} H_2C=CH_2+(SCN)_2\rightarrow CH_2\text{-}CH_2\\ & | & |\\ SCN \ SCN \end{array}$$

4. Reaction with alkalies : Like halogens, pseudohalogens also react with alkalies. $Cl_2 + 2KOH (cold, dilute) \rightarrow KCl + KOCl + H_2O$ $(SCN)_2 + 2KOH (cold, dilute) \rightarrow KSCN + KOSCN + H_2O$

$\begin{array}{l} 3Cl_2+6KOH \ (Hot, \ concentrated) \rightarrow 5KCl+KClO_3+3H_2O \\ 3(SCN)_2+6KOH \ (Hot, \ concentrated) \rightarrow 5KSCN+KSCNO_3+3H_2O \end{array}$

5. Like halogens, pseudohalogens also combine with hydrogen to form monobasic hydracids. (Ex. HCN, HSCN, HSeCN etc.)

SIMILARITIES BETWEEN HALIDE IONS AND PSEUDOHALIDES:

The main points of similarity between the pseudohalogens and the halogens are that they may be reduced to corresponding uni-negative anions of similar chemical behaviour.

1. Like the dihalogen molecules, the pseudohalogens undergo thermal and photochemical dissociation.

 $Cl_2 \text{ -}hv \rightarrow 2Cl \bullet \quad \text{; } (CN)_2 \text{ -}hv \rightarrow 2CN \bullet$

2. The pseudohalide anions like halides may be oxidised to the corresponding pseudohalogens.

 $\begin{array}{ll} I_2 + 2e \rightarrow 2I^{-} & E^\circ = + \ 0.54 \ V \\ (SCN)_2 + 2e \rightarrow 2SCN^{-} & E^\circ = + 0.77 \ V \end{array}$

- 3. Like halide ions, pseudohalide ions also form complex ions with transition metal ions. Complex ions given by halide ions: FeF_6^{3-} ; CoCl_4^{2-} ; HgI_4^{2-} Analogous complex ions given by pseudohalide ions: $\text{Fe}(\text{CN})_6^{3-}$; $\text{Co}(\text{SCN})_4^{2-}$; $\text{Hg}(\text{CN})_4^{2-}$
- 4. With hydrogen ion pseudohalides may form hydracids, eg. HCN, HSCN, N₃H, which are however very weak acids compared to halogen acids like HCl, HBr and HI.
- 5. Like halide ions, pseudohalide ions give insoluble salts with Ag+, Pb²⁺ and Hg+ cations. Like AgCl, AgCN is also white, insoluble in water but soluble in ammonia. Ag⁺ + +Cl⁻ → AgCl ↓
 Ag⁺ + +CN⁻ → AgCN ↓

 $\begin{array}{l} 2Hg^{+} + 2CI^{-} \rightarrow Hg_{2}Cl_{2} \downarrow \\ 2Hg^{+} + 2SCN^{-} \rightarrow Hg_{2}(NCS)_{2} \downarrow \\ Pb^{+2} + 2CI^{-} \rightarrow PbCl_{2} \downarrow \\ Pb^{+2} + 2CNS^{-} \rightarrow Pb(CNS)_{2} \downarrow \end{array}$

6. Behaviour of Pb(IV) chloride and Pb(IV) pseudohalide towards heat is similar.

 $\begin{array}{l} PbCl_4+\text{-}HEAT \rightarrow PbCl_2+Cl_2\uparrow\\ Pb(SCN)_4+\text{-}HEAT \rightarrow Pb(SCN)_2+(SCN)_2\uparrow \end{array}$

7. Like halide ions, pseudohalide ions also behave as a bridging ligands.