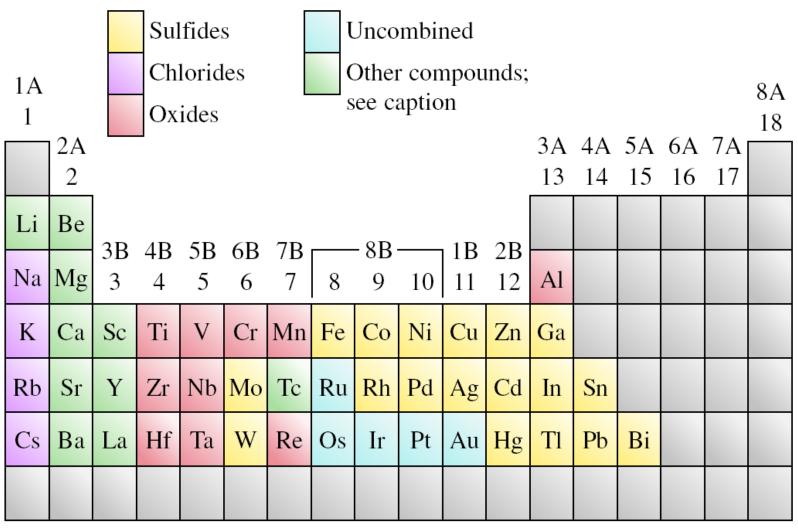
The McGraw·Hill Companies

Chapter 23 Metallurgy and Chemistry of the Metals

Copyright McGraw-Hill 2009


23.1 Occurrence of the Metals

- Most metals come from minerals.
 - A *mineral* is a naturally occurring substance with a range of chemical composition.
 - An ore is a mineral deposit concentrated enough to allow economical recovery of a desired metal.
- Metals exist in various forms
 - In the Earth's surface
 - As ions in seawater
 - In the ocean floor

TABLE 23.1Natural Sources of Common Metals

Туре	Minerals
Uncombined metals	Ag, Au, Bi, Cu, Pd, Pt
Carbonates	BaCO ₃ (witherite), CaCO ₃ (calcite, limestone), MgCO ₃ (magnesite), CaCO ₃ \cdot MgCO ₃ (dolomite), PbCO ₃ (cerussite), ZnCO ₃ (smithsonite)
Halides	CaF ₂ (fluorite), NaCl (halite), KCl (sylvite), Na ₃ AlF ₆ (cryolite)
Oxides	$Al_2O_3 \cdot 2H_2O$ (bauxite), Al_2O_3 (corundum), Fe_2O_3 (hematite), Fe_3O_4 (magnetite), Cu_2O (cuprite), MnO_2 (pyrolusite), SnO_2 (cassiterite), TiO ₂ (rutile), ZnO (zincite)
Phosphates	$Ca_3(PO_4)_2$ (phosphate rock), $Ca_5(PO_4)_3OH$ (hydroxyapatite)
Silicates	$Be_3Al_2Si_6O_{18}$ (beryl), ZrSiO ₄ (zircon), NaAlSi_3O ₈ (albite), $Mg_3(Si_4O_{10})(OH)_2$ (talc)
Sulfides	Ag_2S (argentite), CdS (greenockite), Cu ₂ S (chalcocite), FeS ₂ (pyrite), HgS (cinnabar), PbS (galena), ZnS (sphalerite)
Sulfates	BaSO ₄ (barite), CaSO ₄ (anhydrite), PbSO ₄ (anglesite), SrSO ₄ (celestite), MgSO ₄ \cdot 7H ₂ O (epsomite)

Metals and Their Best Known Minerals

23.2 Metallurgical Processes

- *Metallurgy* is the science and technology of separating metals from their ores and of compounding alloys.
- An *alloy* is a solid solution either of two or more metals, or of a metal or metals with one or more *nonmetals*.
- Preparation, production and purification are principal steps involved in the recovery of a metal from its ore

- Preparation of the ore desired mineral is separated from waste materials or *gangue* (clay and silicate minerals)
 - Flotation
 - Magnetic separation
 - Amalgamation
- Production of metal reduction process to isolate metal from the combined form
 - Roasting

$$CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$$

 Chemical reduction – reducing agent at high temperatures

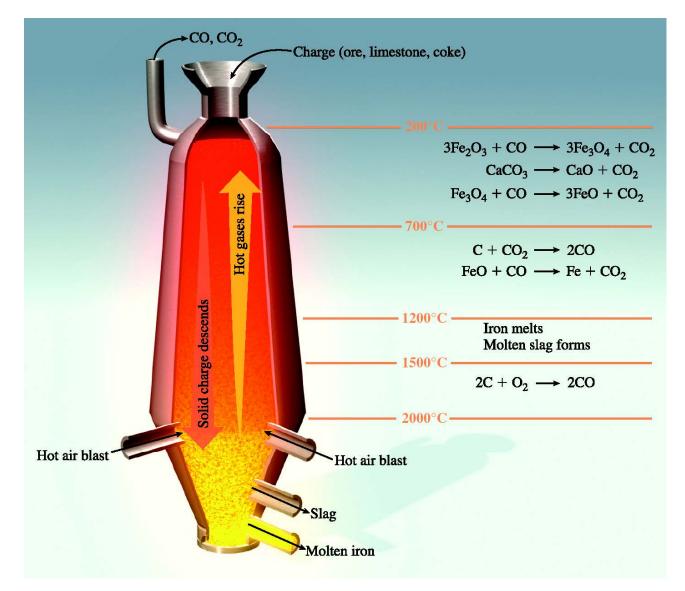
 $V_2O_5(s) + 5Ca(l) \longrightarrow 2V(l) + 5CaO(s)$

• Electrolytic reduction – suitable for electropositive metals

 $2MO(l) \longrightarrow 2M \text{ (at cathode)} + O_2 \text{ (at anode)}$

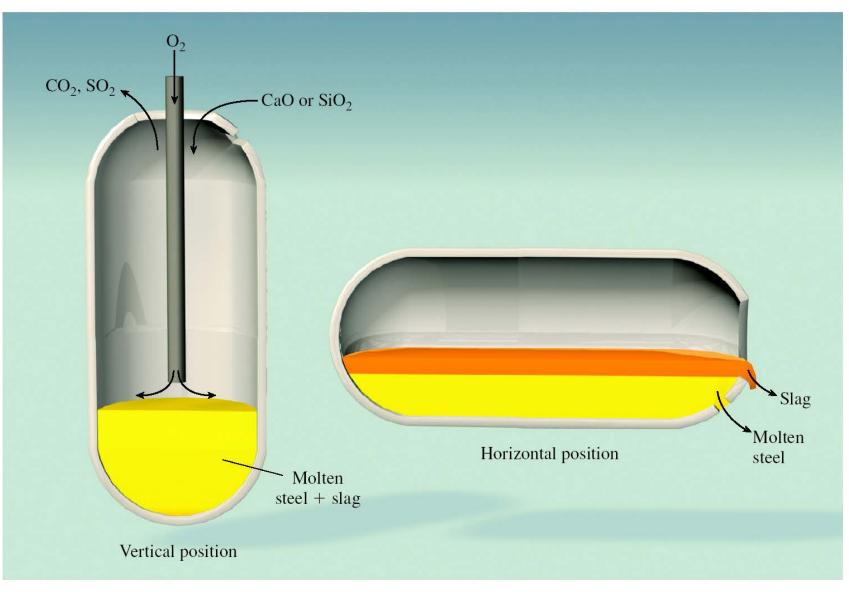
 $2MCl(l) \longrightarrow 2M$ (at cathode) + Cl_2 (at anode)

- pyrometallurgy, procedures carried out at high temperatures
 - -Chemical reduction
 - -Electrolytic reduction


TABLE 23.2

Reduction Processes for Some Common Metals

	Metal	Reduction Process
	Lithium, sodium, magnesium, calcium	Electrolytic reduction of the molten chloride
,	Aluminum	Electrolytic reduction of anhydrous oxide (in molten cryolite)
2	Chromium, manganese, titanium, vanadium, iron, zinc	Reduction of the metal oxide with a more electropositive metal, or reduction with coke and carbon monoxide
V	Mercury, silver, platinum, copper, gold	These metals occur in the free (uncombined) state, or they can be obtained by roasting their sulfides


- Metallurgy of iron
 - Iron exists in Earth's crust in many different minerals and must be isolated
 - Chemical reduction by carbon in a blast furnace
 - Mineral is mixed with carbon and limestone (CaCO₃)
 - Slag removes sand and aluminum oxide impurites
 - Molten iron is removed at the bottom of the furnace

A Blast Furnace

- Steelmaking
 - Steel is an alloy of iron with a small carbon content plus various other elements
 - Oxidation process to remove unwanted impurities
 - Basic oxygen process widely used due to its simplicity
 - *Flux* removes oxidized impurities
 - Flux used depends on impurities (CaO versus SiO₂)
 - Rate of cooling of molten steel (*tempering*) helps determine the carbon content and the steel's properties

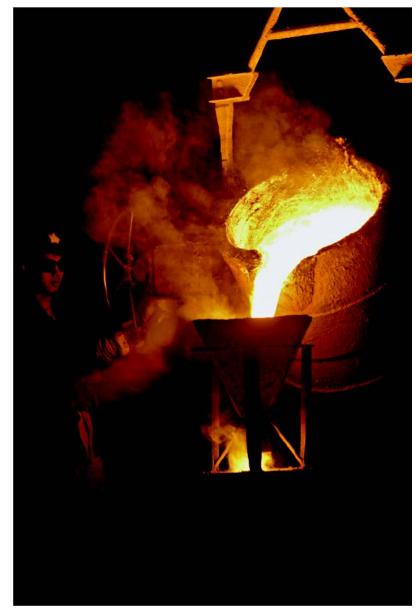
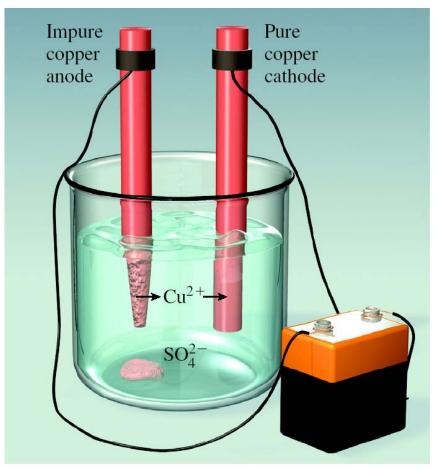

Basic Oxygen Process

TABLE 23.3	Types of Steel								
Composition (Percent by Mass)*									
Туре	С	Mn	Р	S	Si	Ni	Cr	Others	Uses
Plain	1.35	1.65	0.04	0.05	0.06			Cu (0.2–0.6)	Sheet products, tools
High-strength	0.25	1.65	0.04	0.05	0.15-0.9	0.4–1.0	0.3–1.3	Cu (0.01–0.08)	Construction, steam turbines
Stainless	0.03-1.2	1.0–10	0.04–0.06	0.03	1–3	1–22	4.0–27		Kitchen utensils, razor blades

*A single number indicates the maximum amount of the substance present.

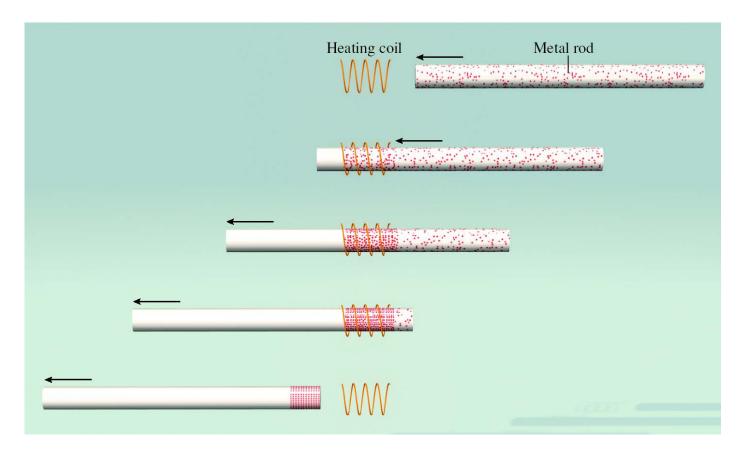
Steelmaking

Copyright McGraw-Hill 2009


- Purification of Metals
 - Occurs after reduction
 - Extent depends on the usage of the metal
 - Types
 - Distillation based on boiling points
 –Mond process for nickel

$$Ni(s) + 4CO(g) \longrightarrow Ni(CO)_4(g)$$

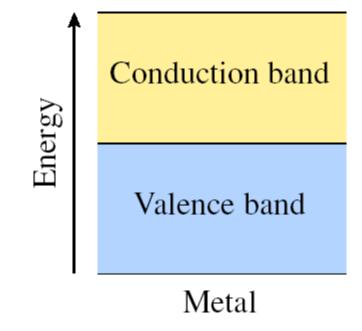
At 200 °C


$$Ni(CO)_4(g) \longrightarrow Ni(s) + 4CO(g)$$

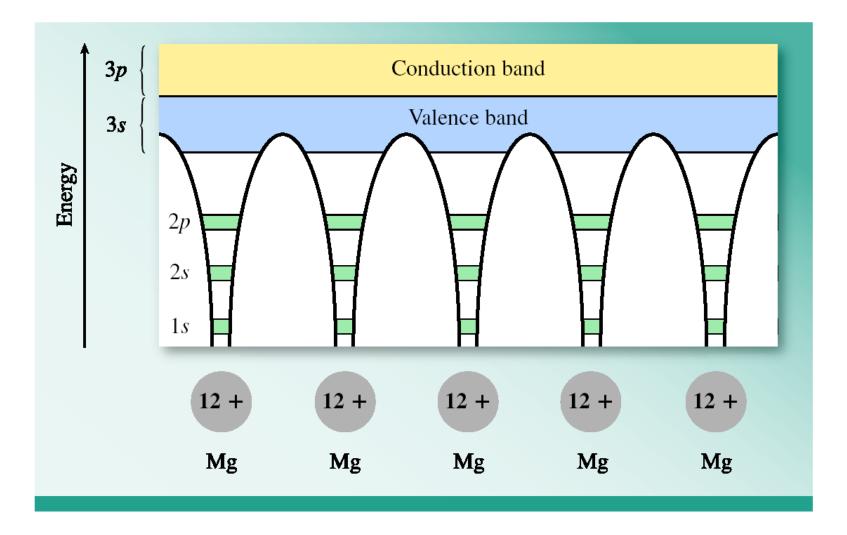
Electrolysis – an important techniqueExample for copper purification

- Zone refining

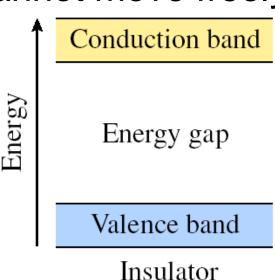
• Produces extremely pure metals



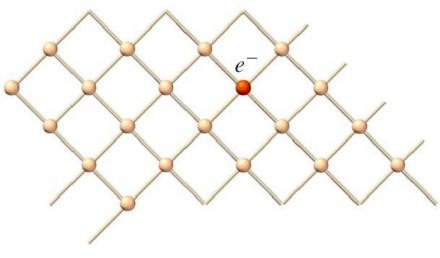
23.3 Band Theory of Conductivity

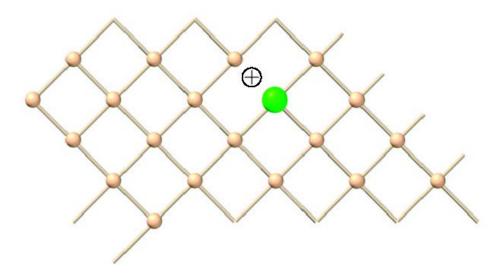

- Band theory model used to study conductivity in metals
 - Delocalized electrons move freely through "bands" formed by overlapping molecular orbitals
- Conductors
 - Metals are good conductors of electricity
 - Explained by band theory

- Overlapping molecular orbitals produce

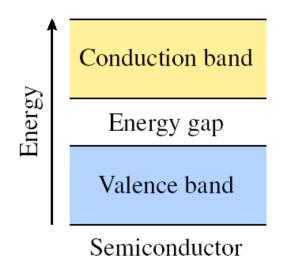

- A valence band (lower energy)
- A conduction band (higher energy)
- Bands are separated by an amount of energy called the *band gap*
- In metals the band gap is negligible

Formation of Conduction Bands in Mg

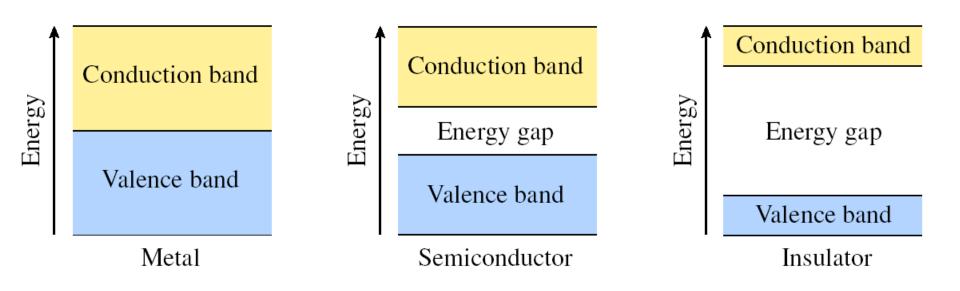

- Metals are viewed as an array of positive charges immersed in a sea of delocalized electrons.
- Insulators ineffective conductors of electricity
 - Band gap is large
 - Electrons cannot move freely


Copyright McGraw-Hill 2009

- Semiconductors are elements that normally are *not* conductors, but will conduct electricity
 - at elevated temperatures
 - or when combined with a small amount of certain other elements.
 - Group 4A elements are semiconductors especially
 - Silicon
 - Germanium


- Doping can enhance the ability to conduct
 - Addition of small amounts of certain impurities
- Types of impurities
 - Donor impurities provide additional electrons
 - The doping of silicon ([Ne] $3s^23p^{2}$) with phosphorus ([Ne] $3s^23p^3$)
 - Form *n-type semiconductors* (*n* for negative from the charge of the "extra" electron)

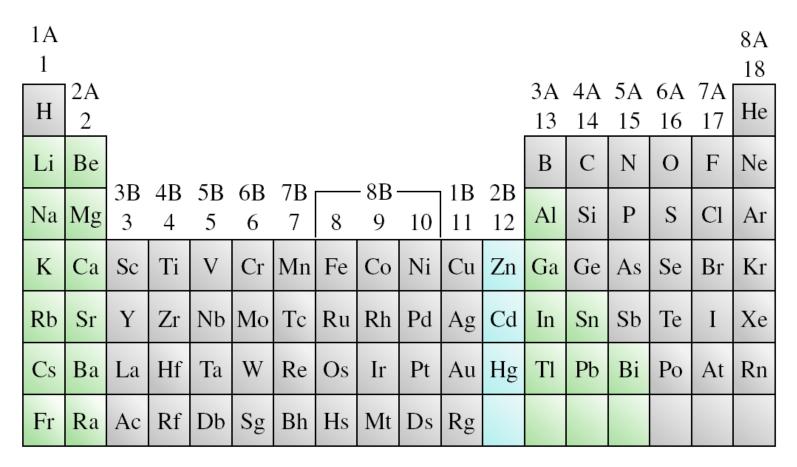
- Acceptor impurities electron deficient
 - The doping of silicon ([Ne] $3s^23p^2$) with boron [He] $2s^22p^1$
 - Form *p-type semiconductors* (*p* for positive from the electron deficiency)



- Energy gap is smaller after doping

- Conductivity increased by a factor of 100,000
- Finds wide application in electronic components

Comparison: Conductors, Semiconductors, Insulators



23.4 Periodic Trends in Metallic Properties

- Metals are generally
 - Lustrous in appearance
 - Solid at room temperature (with the exception of mercury)
 - Good conductors of heat
 - Good conductors of electricity
 - Malleable (can be hammered flat)
 - Ductile (can be drawn into wires)

- Classified as representative (A Groups) or transition (B Groups) based on position on the periodic table
- Periodic trends
 - Electronegativity increases left to right across a period and up a column
 - Metallic character decreases left to right across a period and up a column
 - Form positive ions or cations
 - Have positive oxidation numbers

Metals on the Periodic Table

Main group metals coded in green.

23.5 The Alkali Metals

• Group IA on the Periodic Table

TABLE 23.4 Properties of Alkali Metals							
	Li	Na	K	Rb	Cs		
Valence electron configuration	$2s^{1}$	$3s^{1}$	$4s^{1}$	$5s^{1}$	$6s^1$		
Density (g/cm ³)	0.534	0.97	0.86	1.53	1.87		
Melting point (°C)	179	97.6	63	39	28		
Boiling point (°C)	1317	892	770	688	678		
Atomic radius (pm)	155	190	235	248	267		
Ionic radius (pm)*	60	95	133	148	169		
Ionization energy (kJ/mol)	520	496	419	403	375		
Electronegativity	1.0	0.9	0.8	0.8	0.7		
Standard reduction potential (V)†	3.05	2.71	2.93	2.93	2.92		

 * Refers to the cation $M^{+},$ where M denotes an alkali metal atom.

† The half-reaction is $M^+(aq) + e^- \longrightarrow M(s)$.

- Common properties of the alkali metals
 - Common oxidation state +1
 - Do not occur free in nature, are combined in halides, sulfates, carbonates and silicates
 - Found dissolved in seawater due to geologic erosion of minerals
- Sodium and Potassium
 - Preparation
 - Sodium obtained from electrolysis of molten salt
 - Potassium distillation of molten KCI in the presence of sodium vapor

- Reactions
 - React with water to from hydroxides
 - React with oxygen to form oxides, peroxides, superoxides

$$2\operatorname{Na}(s) + \operatorname{O}_{2}(g) \longrightarrow \operatorname{Na}_{2}\operatorname{O}_{2}(s)$$
$$\operatorname{K}(s) + \operatorname{O}_{2}(g) \longrightarrow \operatorname{KO}_{2}(s)$$

Dissolve in liquid ammonia to form powerful reducing agents

$$Na \xrightarrow{NH_3} Na^+ + e^-$$
$$K \xrightarrow{NH_3} K^+ + e^-$$

- Compounds of sodium and potassium
 - Sodium carbonate, Na_2CO_3 , or soda ash
 - Important in industrial processes manufacture of soaps, detergents, medicine, food additives
 - Produced in the Solvay process

 $NH_{3}(aq) + NaCl(aq) + H_{2}CO_{3}(aq) \longrightarrow NaHCO_{3}(s) + NH_{4}Cl(aq)$ $2NaHCO_{3}(s) \longrightarrow Na_{2}CO_{3}(s) + CO_{2}(g) + H_{2}O(g)$

• Alternate production – heating the mineral *trona*, $[Na_5(CO_3)_2(HCO_3) \cdot 2H_2O]$

 $2Na_5(CO_3)_2(HCO_3) + 2H_2O(s) \longrightarrow 5Na_2CO_3(s) + CO_2(g) + 3H_2O(g)$

- Sodium and potassium hydroxides
 - Prepared by electrolysis of chloride salts
 - Strong bases
 - Highly soluble in water
- Sodium nitrate and potassium nitrate
 - Sodium nitrate is found in Chili salt peter and decomposes

 $2NaNO_3(s) \longrightarrow 2NaNO_2(s) + O_2(g)$

- Potassium nitrate (salt peter) is prepared by

 $\text{KCl}(aq) + \text{NaNO}_3(aq) \longrightarrow \text{KNO}_3(aq) + \text{NaCl}(aq)$

23.6 The Alkaline Earth Metals

• Group 2 A on the periodic table

TABLE 23.5 Properties of Alkaline Earth Metals								
	Ве	Mg	Ca	Sr	Ва			
Valence electron configuration	$2s^2$	$3s^{2}$	$4s^{2}$	$5s^{2}$	$6s^2$			
Density (g/cm ³)	1.86	1.74	1.55	2.6	3.5			
Melting point (°C)	1280	650	838	770	714			
Boiling point (°C)	2770	1107	1484	1380	1640			
Atomic radius (pm)	112	160	197	215	222			
Ionic radius (pm)*	31	65	99	113	135			
First ionization energy (kJ/mol)	899	738	590	548	502			
Second ionization energy (kJ/mol)	1757	1450	1145	1058	958			
Electronegativity	1.5	1.2	1.0	1.0	0.9			
Standard reduction potential (V) [†]	-1.85	-2.37	-2.87	-2.89	-2.90			

* Refers to the cation M^{2+} , where M denotes an alkali earth metal atom.

† The half-reaction is $M^{2+}(aq) + 2e^{-} \longrightarrow M(s)$.

- Common properties (Except for Be which resembles 3A elements)
 - Somewhat less electropositive than alkali metals
 - Less reactive than the alkali metals.
 - M²⁺ ions attain the stable electron configuration of the preceding noble gas
 - Oxidation number is commonly +2
 - All isotopes of radium are radioactive

- Magnesium
 - Magnesium is the sixth most plentiful element in Earth's crust (about 2.5 percent by mass).
 - principal magnesium ores are brucite $[Mg(OH)_2]$, dolomite $(CaCO_3 \cdot MgCO_3)$ and epsomite $(MgSO_4 \cdot 7H_2O)$.
 - Seawater is a source of magnesium—there are about 1.3 g of magnesium in each kilogram of seawater.
 - Metallic magnesium is obtained by electrolysis, from its molten chloride, MgCl₂

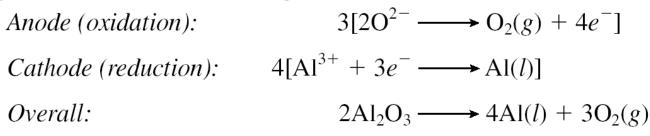
- Strongly basic hydroxide
- Reactions of magnesium

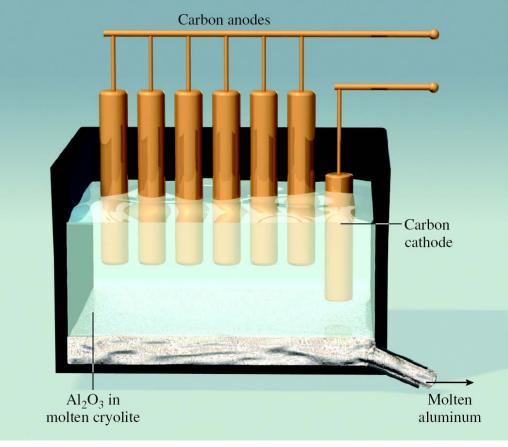
 $Mg(s) + H_2O(g) \longrightarrow MgO(s) + H_2(g)$ $2Mg(s) + O_2(g) \longrightarrow 2MgO(s)$ $3Mg(s) + N_2(g) \longrightarrow Mg_3N_2(s)$

Magnesium is essential to plant and animal life

- Calcium
 - Earth's crust contains about 3.4 percent calcium by mass.
 - Calcium occurs in limestone, calcite, chalk, and marble as CaCO₃; in dolomite as CaCO₃·MgCO₃, gypsum as CaSO₄ · 2H₂O; and in fluorite as CaF₂
 - Metallic calcium is best prepared by the electrolysis of molten calcium chloride (CaCl₂).

 Reactions of calcium and calcium compounds


$$Ca(s) + 2H_2O(l) \longrightarrow Ca(OH)_2(aq) + H_2(g)$$
$$CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$$
$$CaO(s) + H_2O(l) \longrightarrow Ca(OH)_2(aq)$$


- Metallic calcium serves mainly as an alloying agent
- Essential for living systems

23.7 Aluminum

- Most abundant metal and the third most plentiful element in Earth's crust (7.5 percent by mass).
- Elemental form does not occur in nature
- Principal ore is bauxite $(AI_2O_3 \cdot 2H_2O)$
- Other minerals containing aluminum are orthoclase (KAlSi₃O₈), beryl (Be₃Al₂Si₆O₁₈), cryolite (Na₃AlF₆), and corundum (Al₂O₃)
- Aluminum used to be considered a precious metal until Hall developed a method of aluminum production.

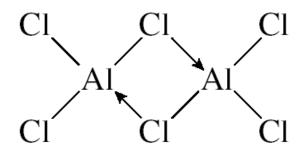
• Preparation – Hall process

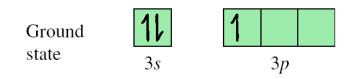
• Reactions of the element

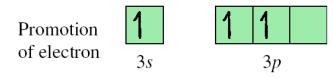
- Amphoteric - reacts with acid or base

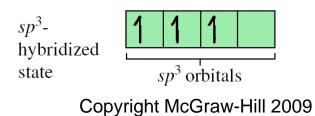
 $2\mathrm{Al}(s) + 6\mathrm{HCl}(aq) \longrightarrow 2\mathrm{AlCl}_3(aq) + 3\mathrm{H}_2(g)$

 $2\mathrm{Al}(s) + 2\mathrm{NaOH}(aq) + 2\mathrm{H}_2\mathrm{O}(l) \longrightarrow 2\mathrm{NaAlO}_2(aq) + 3\mathrm{H}_2(g)$

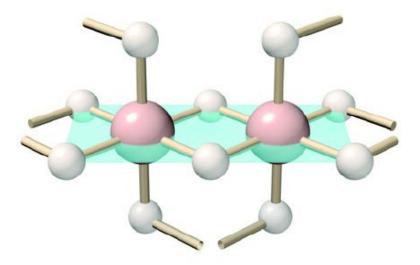

- Oxide formation $4Al(s) + 3O_2(g) \longrightarrow 2Al_2O_3(s)$


- With metal oxides


 $2Al(s) + Fe_2O_3(s) \longrightarrow Al_2O_3(l) + 2Fe(l)$


• Aluminum chloride

- Exists as a dimer - Al₂Cl₆



- Aluminum hydrides
 - well-defined series of compounds
 - aluminum hydride is a polymer in which each aluminum atom is surrounded octahedrally by bridging hydrogen atoms

Other important reactions – Hydrolysis

 $AlCl_3(s) + 3H_2O(l) \longrightarrow Al(OH)_3(s) + 3HCl(aq)$

– Amphoterism

 $Al(OH)_{3}(s) + 3H^{+}(aq) \longrightarrow Al^{3+}(aq) + 3H_{2}O(l)$ $Al(OH)_{3}(s) + OH^{-}(aq) \longrightarrow Al(OH)_{4}^{-}(aq)$

- Formation of alums $M^+M^{3+}(SO_4)_2 \cdot 12H_2O$ $M^+: K^+, Na^+, NH_4^+$ $M^{3+}: Al^{3+}, Cr^{3+}, Fe^{3+}$

Key Points

- Occurrence of metals
 - Minerals
 - Ores
- Metallurgical processes
 - Preparation of ores
 - Production of metal
 - Chemical reduction
 - Electrolytic reduction

- Metallurgy of iron
- Steelmaking
- Purification
 - Distillation
 - Electrolysis
 - Zone refining
- Band Theory of Conductivity
 - Conductors
 - Insulators
 - Semiconductors

- Donor impurities
- *n*-type semiconductors
- Acceptor impurities
- *p*-type semiconductors
- Periodic trends in metallic properties
- The alkali metals
 - Properties and reactions of the metals
 - Sodium
 - Potassium
 - Important compounds

- The alkaline earth metals
 - Properties and reactions of the metals
 - Calcium and magnesium
- Aluminum
 - Properties and reactions
 - Important compounds