Chemistry: A Molecular Approach, 1st Ed. Nivaldo Tro

Chapter 23 Metals & Metallurgy

Roy Kennedy Massachusetts Bay Community College Wellesley Hills, MA 2008, Prentice Hall

General Properties and Structure of Metals

- opaque
- good conductors of heat and electricity
- high malleability and ductility
- in the electron sea model, each metal atom releases its valence electrons to be shared by all the atoms in the crystal
- the valence electrons occupy an energy band called the valence band that is delocalized over the entire solid
- however, each metal has its own unique properties to be accounted for

Properties of Some Metals

TABLE 23.1 Thermal Conductivity and Electrical Resistivity of Several Metals							
Metal	Thermal Conductivity (W/cm · K)	Electrical Resistivity ($\Omega \cdot cm$)					
Ag, silver	4.29	1.59					
Cu, copper	4.01	1.67					
Fe, iron	0.804	9.71					
V, vanadium	0.307	24.8					

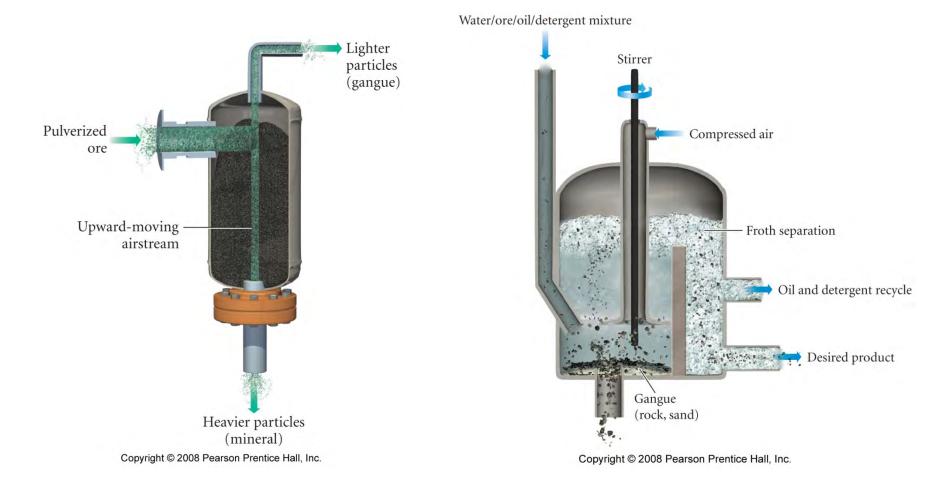
Copyright © 2008 Pearson Prentice Hall, Inc.

Distribution of Metals in Earth

- metals make up about 25% of the Earth's crust
- aluminum is the most abundant
- alkali and alkali earth metals make up about 1%
- iron is only transition metal > 5%
- only Ni, Cu, Ag, Au, Pd, Pt found in native form

✓ noble metals

most metals found in minerals
 ✓ natural, homogeneous crystalline inorganic solids


Metallurgy

- the mineral must first be separated from the surrounding ore material by physical means
- **extractive metallurgy** are the chemical processes that separate a metal from its mineral
- **refining** are the processes that purify the metal for use

Separation

- first step is to crush the ore into small particles
- the mineral is then separated from the gangue by physical means
 - \checkmark using cyclonic winds to separate by density
 - ✓ froth flotation in which the mineral is treated with a wetting agent to make it more attracted to the froth

Separation Methods

Pyrometallurgy

- in **pyrometallurgy**, heat is used to extract the metal from the mineral
- some minerals can be decomposed on heating into volatile materials that will vaporize easily, leaving the metal behind this is called **calcination**

 \checkmark or drive off water of hydration

$$PbCO_{3(s)} \xrightarrow{\Delta} PbO_{(s)} + CO_{2(g)}$$
$$Fe_2O_3 \bullet 2 Fe(OH)_{3(s)} \xrightarrow{\Delta} 2 Fe_2O_{3(s)} + 3 H_2O_{(g)}$$

Pyrometallurgy

• heating a mineral so that it will react with furnace gases is called **roasting**

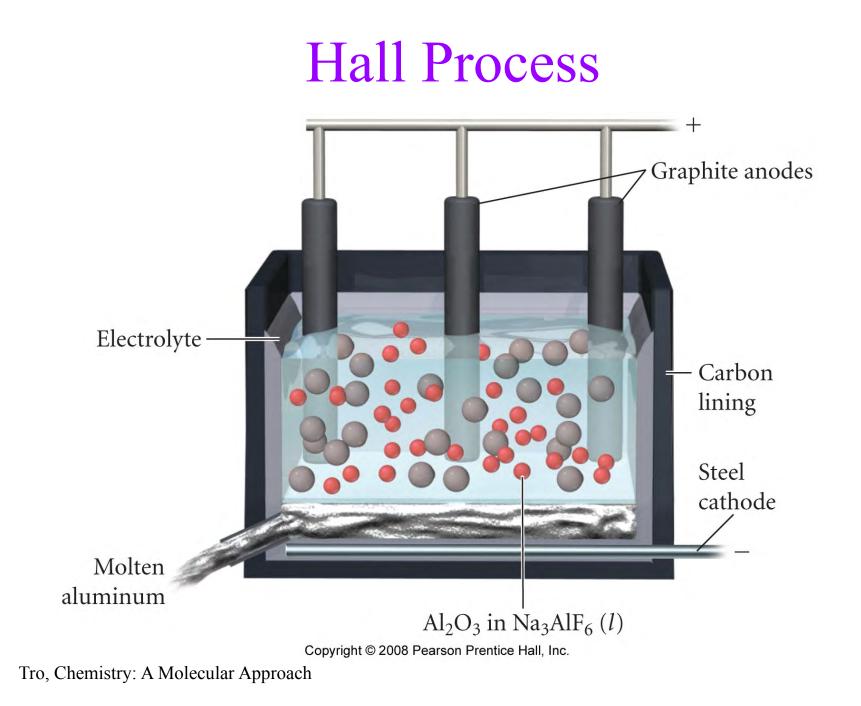
 \checkmark if the roast product is a liquid, it's called **smelting**

- if some byproduct of the roasting doesn't volatilize and escape, a **flux** can be added to react with the nonvolatile gangue to create a low-melting waste product easy to separate
 - \checkmark the waste liquid is called the **slag**
 - \checkmark the slag separates from the molten metal by density

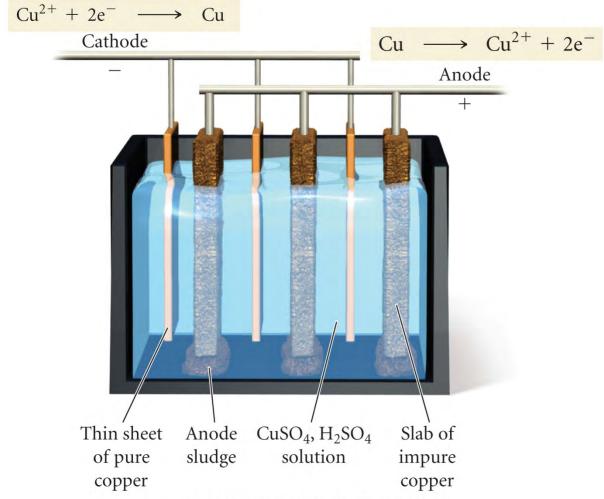
$$\begin{array}{c} \begin{array}{c} 2 \text{PbS} + 3 \text{O}_{2(g)} & \xrightarrow{heat} & 2 \text{PbO}_{10} + \text{SO}_{2(g)} \\ + 2 \text{Hoo}_{(s)}^{2} \text{Hoo}_{(s)}^{2} \text{Hoo}_{(s)} & \xrightarrow{heat} & 2 \text{PbO}_{10} + \text{SO}_{2(g)} \\ & \xrightarrow{heat} & 2 \text{PbO}_{10} + \text{SO}_{2(g)} & \xrightarrow{heat} & 2 \text{PbO}_{10} + \text{SO}_{2(g)} \\ & \xrightarrow{heat} & \xrightarrow{heat} & 2 \text{PbO}_{10} + \text{SO}_{2(g)} \\ & \xrightarrow{heat} & \xrightarrow{heat} & \text{Ho}_{10} + \text{SO}_{2(g)} \end{array}$$

Hydrometallurgy

- the use of aqueous solutions to extract the metal from its mineral is called **hydrometallurgy**
- gold is often extracted by dissolving it in NaCN(*aq*) $4 \operatorname{Au}_{(s)} + 8 \operatorname{CN}_{(aq)}^{-} + \operatorname{O}_{2(g)}^{-} + 2 \operatorname{H}_{2}\operatorname{O}_{(l)}^{-} \rightarrow 4 \operatorname{Au}(\operatorname{CN})_{2}^{-}_{(aq)}^{-} + 4 \operatorname{OH}_{(aq)}^{-}$ • leaching
 - ✓ after the impurities are filtered off, the Au is reduced back to the metallic form


 $2 \operatorname{Au}(\operatorname{CN})_2^{-}_{(aq)} + \operatorname{Zn}_{(s)} \to \operatorname{Zn}(\operatorname{CN})_4^{2-}_{(aq)} + 2 \operatorname{Au}_{(s)}$

• some minerals dissolve in acidic, basic, or salt solutions $2 \operatorname{CuFeS}_{2(s)} + \operatorname{H}_2 \operatorname{SO}_{4(aq)} + 4 \operatorname{O}_{2(g)} \longrightarrow 2 \operatorname{CuSO}_{4(aq)} + \operatorname{Fe}_2 \operatorname{O}_{3(aq)} + 3 \operatorname{S}_{(s)} + \operatorname{H}_2 \operatorname{O}_{(l)}$ $\operatorname{PbSO}_{4(s)} + 4 \operatorname{NaCl}_{(aq)} \longrightarrow \operatorname{Na}_2(\operatorname{PbCl}_4)_{(aq)} + \operatorname{Na}_2 \operatorname{SO}_{4(aq)}$


Electrometallurgy

- using electrolysis to reduce the metals from the mineral is called **electrometallurgy**
- the Hall Process is a method for producing aluminum metal by reducing it from its mineral bauxite $(Al_2O_3 \bullet nH_2O)$
 - ✓ bauxite melts at a very high temperature, to reduce the energy cost, bauxite is dissolved in the molten mineral cryolite (Na₃AlF₃)
 - \checkmark electrolysis of the solution produces molten Al
- electrolysis is also used to refine metals extracted by other methods

✓ e.g., copper

Electrolytic Refining of Cu

Copyright © 2008 Pearson Prentice Hall, Inc.

Powder Metallurgy

- powdered metal particles are compressed into a component
- the component is heated until the metal particles fuse called **sintering**
 - ✓ but not melt
- advantages over milling or casting
 - ✓ no scrap
 - \checkmark intricate pieces can be made that would be difficult to cast
 - ✓ allows making pieces from high melting metals that would require very high heat to cast

Structures of Alloys

- metals generally closest packing of spheres
- exact crystal structure may change with temperature
- **alloys** are metals that contain more than one type of material

 \checkmark some are solid solutions

 \checkmark some have fixed composition like a compound

TABLE 23.2 The Crystal Structures of the 3d Elements

Metal Natural Crystal Structure at Room Temperature

- Sc Hexagonal closest packed
- Ti Hexagonal closest packed
- V Body-centered cubic
- Cr Body-centered cubic
- Mn Alpha complex body-centered cubic form

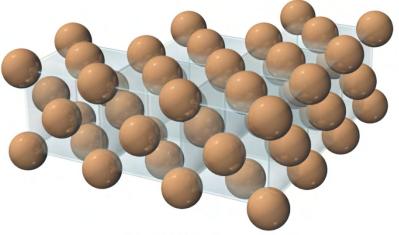
- Fe Body-centered cubic
- Co Hexagonal closest packed
- Ni Face-centered cubic
- Cu Face-centered cubic
- Zn Hexagonal closest packed

Other Crystal Structures at Different Temperatures and Pressures

Face-centered cubic, body-centered cubic Body-centered cubic above 882 °C

Hexagonal closest packed Beta simple cubic form above 727 °C Face-centered cubic above 1095 °C Body-centered cubic above 1133 °C Face-centered cubic above 909 °C Body-centered cubic above 1403 °C Face-centered cubic above 420 °C

Copyright © 2008 Pearson Prentice Hall, Inc.

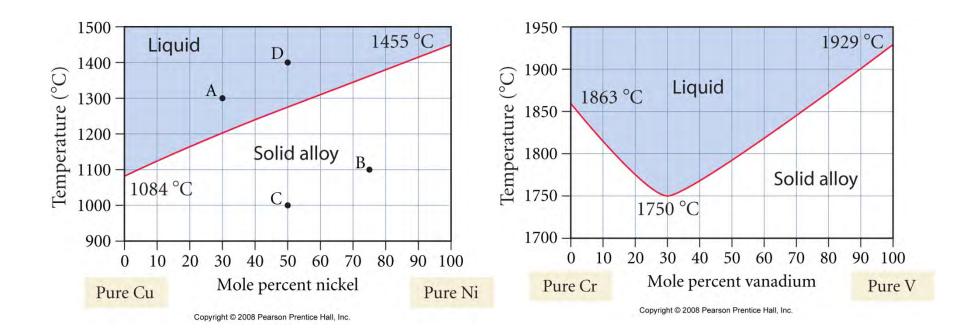

Types of Alloys

• in **substitutional alloys**, one metal atom substitutes for another

 \checkmark crystal structure may stay the same or change

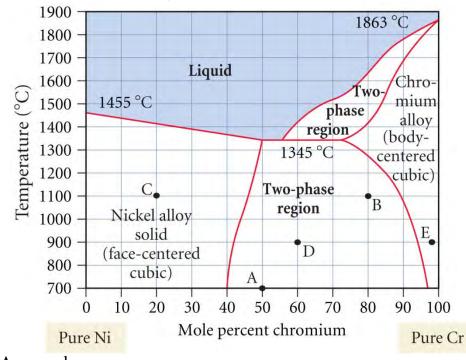
• in **interstitial alloys,** an atom fits in between the metal atoms in the crystal

 \checkmark usually a small nonmetal atom



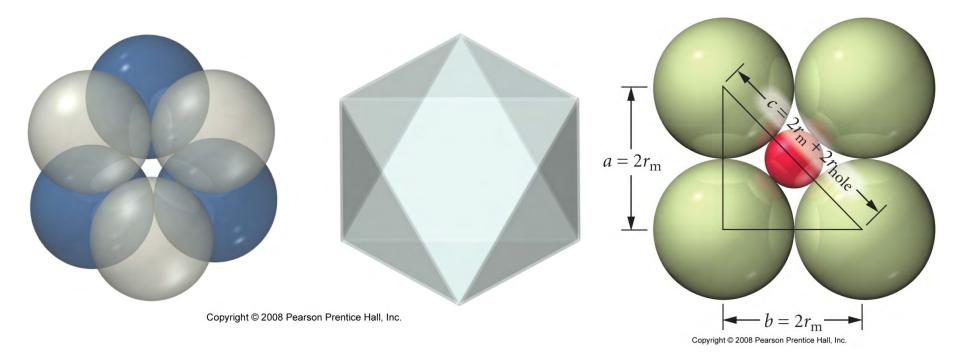
Tro, Chemistry: A Molecular Approach

Copyright © 2008 Pearson Prentice Hall, Inc.

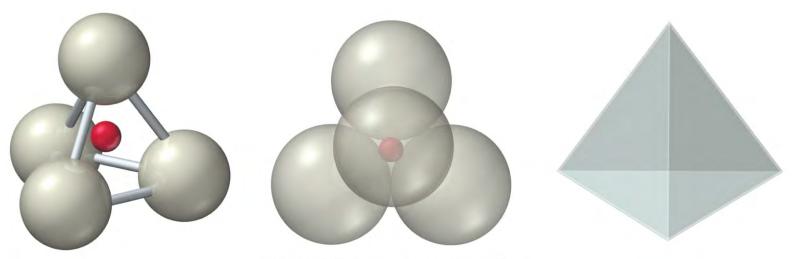

Substitutional Alloys Miscible Solid Solutions

• phase-composition diagram

Substitutional Alloys Limited Solubility Solid Solutions


- because of their different crystal structures, some metals are not miscible
- phase-composition diagram

Interstitial Alloys


- H, B, N, C can often fit in the holes in a closest packed structure
- an atom with maximum radius 41.4% of the metal atom's can fit in an octahedral hole
- an atom with maximum radius 23% of the metal atom's can fit in an tetrahedral hole
- formula of alloy depends on the number and type of holes occupied

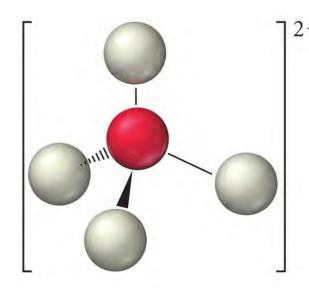
Octahedral Hole

Tro, Chemistry: A Molecular Approach

Tetrahedral Holes

Copyright © 2008 Pearson Prentice Hall, Inc.

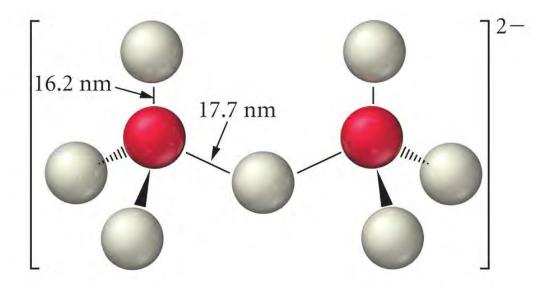
TABLE 23.3 Formu	las of Several Interstitial Alloys			
Compound	Type of Interstitial Hole Occupied	Fraction of Holes Occupied	Formula	
Titanium carbide	Octahedral	All	TiC	
Molybdenum nitride	Octahedral	One-half	Mo ₂ N	
Tungsten nitride	Octahedral	One-half	W ₂ N	
Manganese nitride	Octahedral	One-quarter	Mn ₄ N	
Palladium hydride Tetrahedral		One-quarter	Pd ₂ H	
Titanium hydride	Tetrahedral	All	TiH ₂	

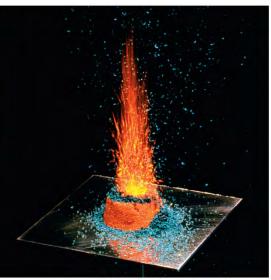

Copyright © 2008 Pearson Prentice Hall, Inc.

Titanium

- 9th most abundant element on Earth
- 4th most abundant metal
- minerals rutile (TiO_2) and ilmenite $(FeTiO_3)$
- very reactive
- oxidizes in the presence of O₂ and N₂
 ✓ needs to be arc-welded under inert atmosphere
- resists corrosion because of a tightly held oxide coat
- stronger than steel, but half the density
- denser than aluminum, but twice as strong
- alloyed with 5% Al
- most common use is as TiO₂ in paint

Chromium


- forms many compounds with different colors
- mineral chromite (FeCr₂O₄)
 ✓ which is reduced with Al
- white, hard, lustrous, brittle
- Cr dissolves in HCl and H₂SO₄ but not HNO₃
- mainly used as alloy to make stainless steel
- compounds used as pigments and wood preservatives
- toxic and carcinogenic
- oxidation states +1 to +6


Chromate (CrO_4^{2-})

Tro, Chemistry: A Molecular Approach

Dichromate $(Cr_2O_7^{2-})$

Copyright © 2008 Pearson Prentice Hall, Inc.

Manganese

- mineral pyrolusite (MnO₂), hausmannite (Mn₃O₄), and rhodochrosite MnCO₃
 - \checkmark which is reduced with Al or Na
 - ✓ heating impure pyrolusite with C produces alloy ferromanganese
- Mn very reactive, dissolves in acids
- used as alloy to make stainless steel
- compounds used as glass additives
- oxidation states +1 to +7

Cobalt

- mineral cobaltite (CoAsS),
- ferromagnetic
- Mn very reactive, dissolves in acids
- used as alloy to make high-strength steels
 ✓ carbaloy
- used to make magnets
- compounds with deep blue colors, used in pigments and inks
- covitamin of B₁₂

Copper

- found in its native form
- minerals are chalcopyrite (CuFeS₂), malachite (Cu₂(OH)₂CO₃)
- reddish color
 - \checkmark used in ornamentation and jewelry
- high abundance and concentration = useful industrially
- easy to recycle
- second best electrical conductor used in electrical wiring and devices
- high heat conductivity used in heat exchangers
- used in water piping because of its resistance to corrosion
- long exposure to environment produces a green patina mainly malachite and brohchanite $(Cu_4SO_4(OH)_6)$
- strong metal so used to alloy with metals where strength is needed
 - ✓ bronze = Cu and Sn
 - ✓ brass = Cu and Zn

Tro, Chemistry: A Molecular Approach

Brass – a Mixture

Туре	Color	% Cu	% Zn	Density g/cm ³	MP °C	Tensile Strength psi	Uses
Gilding	redish	95	5	8.86	1066	50K	pre-83 pennies, munitions, plaques
Commercial	bronze	90	10	8.80	1043	61K	door knobs, grillwork
Jewelry	bronze	87.5	12.5	8.78	1035	66K	costume jewelry
Red	golden	85	15	8.75	1027	70K	electrical sockets, fasteners & eyelets
Low	deep yellow	80	20	8.67	999	74K	musical instruments, clock dials
Cartridge	yellow	70	30	8.47	954	76K	car radiator cores
Common	yellow	67	33	8.42	940	70K	lamp fixtures, bead chain
Muntz metal	yellow	60	40	8.39	904	70K	nuts & bolts

Tro, Chemistry: A Molecular Approach

Nickel


- comes from meteor crater in Ontario
- nickel sulfides are roasted in air to form oxides, then reduced with carbon
- separated by converting to volatile Ni(CO)₄, which is later heated to decompose back to Ni
- Ni not very reactive and resistant to corrosion
- used as an alloying metal in stainless steel, especially where corrosion resistance is important
 - ✓ Monel metal
 - \checkmark used in armor plating
- Ni metal plated onto other metals as protective coat

Zinc

- minerals sphalerite (ZnS), smithsonite (ZnCO₃), and franklinite (Zn, Fe, and Mn oxides)
- minerals are roasted in air to form oxides, then reduced with carbon
- used in alloys with Cu (brass) and Cu and Ni (German brass)
- reactive metal
- resists corrosion because it forms an oxide coat
- **galvinizing** is plating Zn onto other metals to protect them from corrosion
 - \checkmark both coating and sacrificial anode
- zinc compounds used in paints for metals
 - \checkmark if scratched, becomes sacrificial anode
- zinc phosphate used to coat steel so that it may be painted
- considered safe used to replace Cr and Pb additives
 - \checkmark though some evidence it may be an environmental hazard

Tro, Chemistry: A Molecular Approach

zinc phosphate adhering to steel surface

Copyright © 2008 Pearson Prentice Hall, Inc.